Математика 24
Информационно-аналитический портал для студентов
Изучайте, решайте, готовьтесь к контрольным и зачётам.
Получайте квалифицированную помощь экспертов онлайн.

Правило Лопиталя

Формула

Для решения пределов существуют различные методы решений и формулы. Но самым быстрым и легким способом, а также универсальным является метод Лопиталя. Для того, чтобы успешно пользоваться этим замечательным простым способом вычисления пределов достаточно хорошо уметь находить производные различных функций. Начнём с теории.

Сформулируем правило Лопиталя. Если:

  • $ \lim \limits_{x \to a} f(x) = \lim \limits_{x \to a} g(x) = 0 \text{ или } \infty $
  • Существуют $ f'(a) \text{ и } g'(a) $
  • $ g'(x)\neq0 $
  • Существует $ \lim \limits_{x \to a} \frac{f(x)}{g(x)} $

тогда существует $ \lim \limits_{x \to a} \frac{f(x)}{g(x)} = \lim \limits_{x \to a} \frac{f'(x)}{g'(x)} $

  1. Подставляем точку $ x $ в предел
  2. Если получается $ \frac{0}{0} \text{ или } \frac{\infty}{\infty} $, тогда находим производную числителя и знаменателя
  3. Подставляем точку $ x $ в получившийся предел и вычисляем его. Если получается неопределенность, то повторяем пункты 2 и 3

Примеры решения

Пример 1
Решить предел по правилу Лопиталя: $ \lim\limits_{x \to -1} \frac{x^2-1}{x^3+x+2} $
Решение

$$ \lim \limits_{x \to -1} \frac{x^2-1}{x^3+x+2} = \frac{0}{0} = $$

Видим, что получилась неопределенность $ \frac{0}{0} $, если подставить вместо иксов точку $ x = -1 $, а это первый сигнал о том, что необходимо применить формулу для вычисления предела. Используем её:

$$ = \lim \limits_{x \to -1} \frac{(x^2-1)'}{(x^3+x+2)'} = $$ $$ =\lim \limits_{x \to -1} \frac{2x}{3x^2+1} = $$

Снова попробуем вычислить предел подставив $ x=-1 $ в последний предел, получаем:

$$ =\frac{2 \cdot (-1)}{3 \cdot (-1)^2+1} = \frac{-2}{4} = -\frac{1}{2} $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lim\limits_{x \to -1} \frac{x^2-1}{x^3+x+2} = -\frac{1}{2} $$
Решение задач от 20 руб
подробное написание
Контрольные работы от 120 руб
подробное написание
Пример 2
Вычислить пределы правилом Лопиталя: $ \lim \limits_{x \to \infty} \frac{\ln x}{x} $
Решение

Решение проводим стандартно, подставляя икс.

$$ \lim \limits_{x \to \infty} \frac{\ln x}{x} = \frac{\infty}{\infty} = \lim \limits_{x \to \infty} \frac{(\ln x)'}{(x)'}= $$

$$ =\lim \limits_{x \to \infty} \frac{\frac{1}{x}}{1}=\lim \limits_{x \to \infty} \frac{1}{x} = \frac{1}{\infty} = 0 $$

Ответ
$$ \lim \limits_{x \to \infty} \frac{\ln x}{x} = 0 $$
Пример 3
Воспользовавшись формулой Лопиталя решить предел: $ \lim \limits_{x \to 0} \frac{\cos x - 1}{x^2} $
Решение

$$ \lim \limits_{x\to 0} \frac{\cos x-1}{x^2} = \frac{0}{0} = \lim \limits_{x \to 0} \frac{(\cos x-1)'}{(x^2)'}= $$

$$ =\lim \limits_{x \to 0} \frac{-\sin x}{2x} = \frac{0}{0}=\lim \limits_{x \to 0} \frac{(-\sin x)'}{(2x)'}= $$

$$ =\lim \limits_{x \to 0} \frac{-\cos x}{2} = \frac{-\cos 0}{2} = -\frac{1}{2} $$

Ответ
$$ \lim \limits_{x \to 0} \frac{\cos x - 1}{x^2} = -\frac{1}{2} $$
Решение задач от 20 руб
подробное написание
Контрольные работы от 120 руб
подробное написание
Пример 4
Вычислить предел используя правило Лопиталя: $ \lim \limits_{x\to 0} \frac{\sin 2x-e^{5x}+1}{x-\cos x+1} $
Решение

$$ \lim \limits_{x\to 0} \frac{\sin 2x-e^{5x}+1}{x-\cos x+1} = \frac{0}{0}= $$

$$ =\lim \limits_{x\to 0} \frac{(\sin 2x-e^{5x}+1)'}{(x-\cos x+1)'} = $$

$$ =\lim \limits_{x\to 0} \frac{(\sin 2x)'-(e^{5x})'+(1)'}{(x)'-(\cos x)'+(1)'}= $$

$$ =\lim \limits_{x\to 0} \frac{2\cos 2x-5e^{5x}}{1+\sin x} =\frac{2\cos0-5e^0}{1+\sin 0}= $$

$$ =\frac{2\cdot 1-5\cdot 1}{1+0} = \frac{-3}{1} = -3 $$

Ответ
$$ \lim \limits_{x\to 0} \frac{\sin 2x-e^{5x}+1}{x-\cos x+1} = -3 $$

Подведем итог: Правило Лопиталя - это способ и метод благодаря которому можно раскрывать неопределенности вида $ \frac{0}{0} $ и $ \frac{\infty}{\infty} $ при вычислении пределов. Суть его состоит в том, что предел отношения функций равен пределу отношений производных от этих функций.

Нужно подробное решение своей задачи?

ЗАКАЗАТЬ РЕШЕНИЕ