Пределы с корнями
Среди задач на решение пределов попадаются пределы с корнями. В результате подстановки значения $ x $ в функцию получаются неопределенности трёх видов:
- $ \bigg [\frac{0}{0} \bigg ] $
- $ \bigg [\frac{\infty}{\infty} \bigg ] $
- $ \bigg [\infty-\infty \bigg ] $
Перед тем, как приступить к решению определите тип своей задачи
Тип 1 $ \bigg [\frac{0}{0} \bigg ] $
Для того, чтобы раскрывать такие неопределенности необходимо домножить числитель и знаменатель дроби на сопряженное к выражению содержащему корень.
Пример 1 |
Найти предел с корнем $$ \lim \limits_{x \to 4} \frac{x-4}{4-\sqrt{x+12}} $$ |
Решение |
Подставляем $ x \to 4 $ в подпределельную функцию: $$ \lim \limits_{x \to 4} \frac{x-4}{4-\sqrt{x+12}} = \frac{0}{0} = $$ Получаем неопределенность $ [\frac{0}{0}] $. Домножим числитель и знаменатель на выражение сопряженное к нему, так как он содержит корень: $ 4+\sqrt{x+12} $ $$ = \lim \limits_{x \to 4} \frac{(x-4)(4+\sqrt{x+12})}{(4-\sqrt{x+12})(4+\sqrt{x+12})} = $$ Используя формулу разности квадратов $ (a-b)(a+b) = a^2-b^2 $ приведем предел к следующему виду: $$ = \lim \limits_{x \to 4} \frac{(x-4)(4+\sqrt{x+12})}{16-(x+12)} = $$ Раскрываем скобки в знаменателе и упрощаем его: $$ = \lim \limits_{x \to 4} \frac{(x-4)(4+\sqrt{x+12})}{4-x} = $$ Сокращам функцию в пределе на $ x-4 $, имеем: $$ = -\lim \limits_{x \to 4} (4+\sqrt{x+12}) = -(4+\sqrt{4+12}) = -8 $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ \lim \limits_{x \to 4} \frac{x-4}{4-\sqrt{x+12}} = -8 $$ |
Тип 2 $ \bigg [\frac{\infty}{\infty} \bigg ] $
Пределы с корнем такого типа, когда $ x \to \infty $ вычислять нужно по-другому в отличии от предыдущего случая. Необходимо определить старшие степени выражений числителя и знаменателя. Затем вынести самую старшую из двух степеней за скобки и сократить.
Пример 2 |
Решить предел с корнем $$ \lim \limits_{x \to \infty} \frac{x^2+5x+2}{\sqrt{x+6}} $$ |
Решение |
Вставляем $ x \to \infty $ в предел и получаем $ [\frac{\infty}{\infty}] $. Определяем, что в числителе старшая степень это $ x^2 $, а в знаменателе $ \sqrt{x} $. Выносим их за скобки: $$ \lim \limits_{x \to \infty} \frac{x^2(1+\frac{5x}{x^2}+\frac{2}{x^2})}{x^2(\sqrt{\frac{x}{x^4}+\frac{6}{x^4})}} = $$ Теперь выполняем сокращение: $$ = \lim \limits_{x \to \infty} \frac{1+\frac{5x}{x^2}+\frac{2}{x^2}}{\sqrt{\frac{1}{x^3}+\frac{6}{x^4}}} = $$ Снова подставляем $ x \to \infty $ в предел, имеем: $$ = \frac{1 + 0 + 0}{ \sqrt{0 + 0}} = \lbrack \frac{1}{0} \rbrack = \infty $$ |
Ответ |
$$ \lim \limits_{x \to \infty} \frac{x^2+5x+2}{\sqrt{x+6}} = \infty $$ |
Тип 3 $ \bigg [\infty-\infty \bigg ] $
Этот вид пределов часто попадается в дополнительных заданиях на экзамене. Чтобы раскрыть такую неопределенность, необходимо умножить и разделить функцию, стоящую в пределе, на выражение сопряженное к ней.
Пример 3 |
Вычислить предел корня $$ \lim \limits_{x \to \infty} \sqrt{x^2-3x}-x $$ |
Решение |
При $ x \to \infty $ в пределе видим: $$ \lim \limits_{x \to \infty} \sqrt{x^2-3x}-x = [\infty - \infty] = $$ После домножения и разделения на сопряженное имеем предел: $$ \lim \limits_{x \to \infty} \frac{(\sqrt{x^2-3x}-x)(\sqrt{x^2-3x}+x)}{\sqrt{x^2-3x}+x} = $$ Упростим числитель, используя формулу разности квадратов: $ (a-b)(a+b)=a^2-b^2 $ $$ = \lim \limits_{x \to \infty} \frac{(x^2-3x)-x^2}{\sqrt{x^2-3x}+x} = $$ После раскрытия скобок и упрощения получаем: $$ \lim \limits_{x \to \infty} \frac{-3x}{\sqrt{x^2-3x}+x} = $$ Далее выносим $ x $ за скобки и сокращаем: $$ = \lim \limits_{x \to \infty} \frac{-3x}{x(\sqrt{1-\frac{3}{x}}+1)} = \lim \limits_{x \to \infty} \frac{-3}{\sqrt{1-\frac{3}{x}}+1} = $$ Снова подставляем $ x \to \infty $ в предел и вычисляем его: $$ = \frac{-3}{\sqrt{1-0}+1} = -\frac{3}{2} $$ |
Ответ |
$$ \lim \limits_{x \to \infty} \sqrt{x^2-3x}-x = -\frac{3}{2} $$ |
Нужно подробное решение своей задачи?
ЗАКАЗАТЬ РЕШЕНИЕ