Модуль вектора
Чтобы найти модуль вектора по координатам точек нужно извлечь квадратный корень из суммы квадратов его координат. То есть модуль вектора это длина вектора.
Если вектор задан на плоскости в виде $ \overline{a} = (x;y) $, то вычисляется модуль по формуле: $$ |\overline{a}|=\sqrt{x^2+y^2} $$
В случае, когда вектор задан в пространстве тремя координатами $ \overline{a}= (x;y;z) $, то модуль находится по формуле: $$ |\overline{a}|=\sqrt{x^2+y^2+z^2} $$
Пример |
Найти модуль вектора по координатам точек $ \overline{a} = (3;4;0) $ |
Решение |
Зная координаты мы первым делом определяем на плоскости или в пространстве задана задача. В нашем случае координат у вектора три, поэтому в пространстве (было бы две координаты, то на плоскости). Используем вторую формулу для пространственной задачи: $$ |\overline{a}|=\sqrt{x^2+y^2+z^2} $$ Подставляя в формулу в место $ x,y,z $ числа из задания получаем модуль: $$ |\overline{a}|=\sqrt{3^2+4^2+0^2} = \sqrt{9+16+0} = \sqrt{25}=5 $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ |\overline{a}|= \sqrt{25}=5 $$ |
Нужно подробное решение своей задачи?
ЗАКАЗАТЬ РЕШЕНИЕ- Проекция вектора на вектор
- Координаты вектора по двум точкам
- Скалярное произведение векторов
- Длина вектора
- Площадь параллелограмма построенного на векторах
- Сложение векторов
- Разложение вектора по векторам
- Угол между плоскостями
- Середина вектора
- Угол между векторами
- Расстояние между двумя точками на плоскости
- Векторное произведение
- Перпендикулярность векторов