Сложение и вычитание матриц
Сложение матриц $ A $ и $ B $ это арифметическая операция, в результате которой, должна получаться матрица $ C $, каждый элемент которой равен сумме соответствующих элементов складываемых матриц:
$$ c_{ij} = a_{ij} + b_{ij} $$
Более подробно формула сложения двух матриц выглядит так:
$$ A + B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = $$
$$ = \begin{pmatrix} a_{11} + b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\ a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\ a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33} \end{pmatrix} = C $$
Обратите внимание, что складывать и вычитать матрицы можно только одинаковой размерности. При сумме или разности будет получаться матрица $ C $ такой же размерности как и слагаемые (вычитаемые) матрицы $ A $ и $ B $. Если матрицы $ A $ и $ B $ отличаются друг от друга размерами, то сложение (вычитание) таких матриц будет ошибкой!
В формуле складываются матрицы 3 на 3, значит и получиться должна матрица 3 на 3.
Вычитание матриц полностью аналогично по алгоритму сложения, только знак минус. Каждый элемент искомой матрицы $ C $ получается благодаря вычитанию соответствующих элементов матриц $ A $ и $ B $:
$$ c_{ij} = a_{ij} - b_{ij} $$
Запишем подробную формулу вычитания двух матриц:
$$ A - B = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} - \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = $$
$$ = \begin{pmatrix} a_{11} - b_{11} & a_{12}-b_{12} & a_{13}-b_{13} \\ a_{21}-b_{21} & a_{22}-b_{22} & a_{23}-b_{23} \\ a_{31}-b_{31} & a_{32}-b_{32} & a_{33}-b_{33} \end{pmatrix} = C $$
Стоит так же заметить, что нельзя складывать и вычитать матрицы с обычными числами, а так же с другими какими-то элементами
Будет полезно знать для дальнейших решений задач с матрицами знать свойства сложения (вычитания).
Свойства
- Если матрицы $ A,B,C $ одинаковые по размеру, тогда для них действует свойство ассоциативности: $$ A + (B + C) = (A + B) + C $$
- Для каждой матрицы существует нулевая матрица, обозначаемая $ O $, при сложении (вычитании) с которой исходная матрица не изменяется: $$ A \pm O = A $$
- Для каждой ненулевой матрицы $ A $ есть противоположная матрица $ (-A) $ сумма с которой обращается в нуль: $$ A + (-A) = 0 $$
- При сложении (вычитании) матриц допустимо свойство коммутативности, то есть матрицы $ A $ и $ B $ можно менять местами: $$ A + B = B + A $$ $$ A - B = B - A $$
Примеры решений
Пример 1 |
Сложить матрицы, затем вычесть. $ A = \begin{pmatrix} 2&3 \\ -1& 4 \end{pmatrix} $ и $ B = \begin{pmatrix} 1&-3 \\ 2&5 \end{pmatrix} $. |
Решение |
Первым делом проверяем матрицы на размерность. У матрицы $ A $ размерность $ 2 \times 2 $, у второй матрицы $ B $ размерность тоже $ 2 \times 2 $. Это значит, что с данными матрицами можно провести совместную операцию по сложению и вычитанию. Напомним, что для суммы нужно выполнить попарное сложение соответствующих элементов матриц $ A \text{ и } B $. $$ A + B = \begin{pmatrix} 2&3 \\ -1& 4 \end{pmatrix} + \begin{pmatrix} 1&-3 \\ 2&5 \end{pmatrix} = $$ $$ = \begin{pmatrix} 2 + 1 & 3 + (-3) \\ -1 + 2 & 4 + 5 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 1 & 9 \end{pmatrix} $$ Аналогично сумме находим разность матриц с помощью замены знака "плюс" на "минус": $$ A - B = \begin{pmatrix} 2&3 \\ -1& 4 \end{pmatrix} + \begin{pmatrix} 1&-3 \\ 2&5 \end{pmatrix} = $$ $$ = \begin{pmatrix} 2 - 1 & 3 - (-3) \\ -1 - 2 & 4 - 5 \end{pmatrix} = \begin{pmatrix} 1 & 6 \\ -3 & -1 \end{pmatrix} $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ A + B = \begin{pmatrix} 3 & 0 \\ 1 & 9 \end{pmatrix}; A - B = \begin{pmatrix} 1 & 6 \\ -3 & -1 \end{pmatrix} $$ |
Пример 2 |
Сложить и вычесть матрицы. $ A = \begin{pmatrix} 2&3&-1 \\ -1&4&2 \end{pmatrix} $ и $ B = \begin{pmatrix} 1&-3 \\ 2&5 \\ -2&4 \end{pmatrix} $. |
Решение |
Как обычно сначала проверяем матрицы на одинаковую размерность. Для матрицы $ A (2\times 3) $ , а у матрицы $ B (3\times 2) $. Видим, что размерности двух матриц не совпадают, поэтому по определению суммы и разности матриц операции провести не возможно! На этом заканчиваем решение данного примера и записываем ответ. |
Ответ |
Данные матрицы нельзя складывать и вычитать из-за разного размера |
Нужно подробное решение своей задачи?
ЗАКАЗАТЬ РЕШЕНИЕ