Производная функции: примеры решения

Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.

Как найти производную?

Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования:

  1. Вынос константы за знак производной:
  2. Производная суммы/разности функций:
  3. Производная произведения двух функций:
  4. Производная дроби:
  5. Производная сложной функции:

Примеры решения

Пример 1
Найти производную функции
Решение

Производная суммы/разности функций равна сумме/разности производных:

Используя правило производной степенной функции имеем:

Так же было учтено, что производная от константы равна нулю.

Ответ
Пример 2
Найти производную функции
Решение

По правилу производной разности:

По таблице интегрирования находим:

С учетом того, что аргумент натурального логарифма отличен от , то нужно домножить ещё на производную самого аргумента:

После упрощения получаем:

Ответ
Контрольные работы от 120 руб, от 4 часов
подробное написание
Решение задач от 20 руб/шт, от 2 часов
подробное написание
Пример 3
Найти производную функции
Решение

В данном примере стоит произведение двух функций, а производная произведения находится по формуле номер 3:

Производная первой функции вычисляется как разность фунций:

Вторая функция является показательной, производная которой находится по формуле: :

Продолжаем решение с учетом найденных производных:

Ответ
Пример 4
Найти производную функции
Решение

Производную дроби найдем по четвертой формуле. Положим и . Тогда их производные по таблице основных элементарных функций равны:

Используя формулу №4 получаем:

Выносим множитель в числителе за скобку:

Ответ
Контрольные работы от 120 руб, от 4 часов
подробное написание
Решение задач от 20 руб/шт, от 2 часов
подробное написание
Пример 5
Найти производную функции
Решение

Данная функция является сложной, потому производную будем брать по цепочке. Сначала от внешней функции, затем от внутренней. При этом выполняя их перемножение.

Заметим, что аргумент синуса отличен от , поэтому тоже является сложной функцией:

Учитывая определение котангенса перепишем полученную производную в удобном компактном виде:

Ответ

Не получается решить свою задачу?

ЗАКАЗАТЬ РЕШЕНИЕ