Математика 24
Информационно-аналитический портал для студентов
Изучайте, решайте, готовьтесь к контрольным и зачётам.
Получайте квалифицированную помощь экспертов онлайн.

Полный дифференциал функции

Как найти?

Постановка задачи

Найти полный дифференциал функции двух переменных $ z = f(x,y) $

План решения

Формула полного дифференциала функции записывается следующим образом:

$$ dz = f'_x (x,y) dx + f'_y (x,y) dy $$

  1. Находим первые частные производные функции $ z = f(x,y) $
  2. Подставляя полученные производные $ f'_x $ и $ f'_y $ в формулу, записываем ответ

Примеры решений

Пример 1
Найти полный дифференциал функции двух переменных $ z = 2x + 3y $
Решение

Находим частные производные первого порядка:

$$ f'_x = 2 $$ $$ f'_y = 3 $$

Подставляем полученные выражения в формулу полного дифференциала и записываем ответ:

$$ dz = 2dx + 3dy $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ dz = 2dx + 3dy $$
Решение задач от 20 руб
подробное написание
Контрольные работы от 120 руб
подробное написание
Пример 2
Найти полный дифференциал функции нескольких переменных $ u = xyz $
Решение

Так как функция состоит из трёх переменных, то в формуле полного дифференциала функции необходимо это учесть и добавить третье слагаемое $ f'_z dz $:

$$ du = f'_x dx + f'_y dy + f'_z dz $$

Аналогично как и в случае функции двух переменных находим частные производные первого порядка:

$$ u'_x = yz $$ $$ u'_y = xz $$ $$ u'_z = xy $$

Используя формулу записываем ответ:

$$ du = yzdx + xzdy + xydz $$

Ответ
$$ du = yzdx + xzdy + xydz $$
Пример 3
Вычислить значение полного дифференциала функции $ z = x^3+y^4 $, при $ x = 1 $, $ y = 2 $, $ dx = 0.03 $ и $ dy = -0.01 $
Решение

Берем частные производные первого порядка:

$$ z'_x = 3x^2 $$ $$ z'_y = 4y^3 $$

Воспользовавшись формулой составляем полный дифференциал:

$$ dz = 3x^2 dx + 4y^3 dy $$

Из условия задачи известны все переменные для вычисления значения дифференциала. Подставив их и вычислим значение:

$$ dz = 3\cdot 1^2 \cdot 0.03 + 4 \cdot 2^3 \cdot (-0.01) = 0.09 - 0.32 = -0.23 $$

Ответ
$$ dz = -0.23 $$

Нужно подробное решение своей задачи?

ЗАКАЗАТЬ РЕШЕНИЕ