Математика 24
Информационно-аналитический портал для студентов

Изучайте, решайте, готовьтесь к контрольным и зачётам. Получайте квалифицированную помощь экспертов онлайн.

Косинус угла между векторами

Формула

Чтобы найти косинус угла между векторами нужно найти отношение скалярного произведения векторов и произведение их длин (модулей). Если векторы заданы на плоскости двумя координатами и , то косинус угла между ними вычисляется по формуле:

Если векторы будут заданы тремя координатами и , то есть в пространстве, то нахождение косинуса угла между векторами нужно выполнить по формуле:

В числителе находится скалярное произведение векторов, то есть каждая координата умножается на соответствующую координату другого вектора и при этом находится сумма всех произведений. А в знаменателе расположено произведение модулей векторов. Каждый модуль равен извлеченному квадратному корню из суммы квадратов координат вектора.

Примеры решений

Пример
Даны два вектора и . Требуется найти косинус угла между векторами.
Решение

Напомним как найти косинус угла между векторами. Необходимо определить на плоскости или в пространстве находятся векторы, то есть сколько у них координат. Затем воспользоваться подходящей формулой.

Первым делом вычисляем скалярное произведение: каждую координату одного вектора умножаем на соответствующую координату другого вектора, а потом суммируем произведения:

Далее находим чему равны модули каждого из векторов:

Теперь можно найти косинус угла между векторами подставив найденные значения в первую формулу:

Ответ

Нужно подробное решение своих задач?

ЗАКАЗАТЬ РЕШЕНИЕ